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ABSTRACT 
 

The Virginia Department of Transportation (VDOT) has worked toward end-result 
specifications (ERSs) in asphalt concrete since the mid-1960s.  As stated by Hughes et al. 
(2007), true ERSs can lead to a reduction in VDOT’s overall inspection force resulting in 
considerable savings and allow for the reallocation of inspection resources to key construction 
and placement processes that cannot be measured upon delivery (e.g., joint tacking and 
construction platform preparation).  The latest efforts toward this end were conducted by Hughes 
et al. (2007) who suggested expanding the quality measures for asphalt concrete acceptance to 
include the asphalt concrete volumetric properties of voids in total mix (VTM) and voids in 
mineral aggregates (VMA), along with the already used asphalt content (AC) and gradation.  
This report builds on that and further investigates, through the use of the asphalt concrete 
dynamic modulus, how performance-related ERSs can be introduced into a quality assurance 
(QA) plan.  Specifically, the report 1) documents the current variability of VTM, VMA, and AC; 
2) explores different QA specification plans; and 3) develops and applies a method to predict 
asphalt concrete rutting performance from asphalt concrete dynamic modulus test results using 
the mechanistic-empirical pavement design guide (MEPDG). 

 
Contractor volumetric test results (for the years 2006 through 2008) for VTM, VMA, and 

AC were obtained from VDOT’s central database for production asphalt concrete.  Statistical 
measures of mean, variance and covariance were calculated.  The experimental distribution of 
test results for each of the three volumetric measures was obtained and compared to the normal 
(Gaussian) distribution.  This research used these data and exploratory analysis to present 
alternative QA plans, which ranged from a simple univariate plan to a multivariate percent 
within limits (PWL) plan.  The choice of a specific plan to implement depends, among other 
criteria, on the variable—more specifically on the correlation between these variables—that are 
included as part of this plan.  The PWL method for “uncorrelated” variables (in this case VTM 
and AC) is recommended as it presents a sound statistical approach that avoids the complexities 
that result from incorporating correlated variables. 

 
With advances in mechanistic-empirical pavement design methods (specifically the new 

MEPDG), a framework for performance-related ERSs is now available.  The dynamic modulus 
as a function of temperature and frequency is the main asphalt concrete material input property 
in the MEPDG.  It has significant influence on distress prediction, which makes it a quality 
candidate test for performance-related ERSs.  A principal technical barrier to using the dynamic 
modulus test is the time required to perform the test temperature sweep.  To address this 
obstacle, this report presents a method to reduce the required number of tests to characterize 
asphalt concrete rutting characteristics.  It demonstrates that a single dynamic modulus test is 
sufficient to estimate asphalt concrete rutting potential as calculated by the MEPDG.  This is an 
initial step toward using the dynamic modulus in performance-related ERSs.  However, actual 
implementation still depends on broader acceptance and use of the dynamic modulus testing 
equipment and procedures, as well as the proper calibration of the MEPDG distress models to 
reflect observed field performance.  If and when this is accomplished, the method can be 
extended to fatigue cracking. 
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INTRODUCTION 
 

The Virginia Department of Transportation (VDOT) has worked toward end-result 
specifications (ERSs) in asphalt concrete since the mid-1960s.  The latest efforts toward this end 
were conducted by Hughes et al. (2007) who suggested expanding the quality measures for 
asphalt concrete acceptance to include the asphalt concrete volumetric properties of voids in total 
mix (VTM) and voids in mineral aggregates (VMA) along with the already used asphalt content 
(AC) and gradation.  For asphalt concrete pavement acceptance, the authors suggested the use of 
field density and ride quality (smoothness) with permeability as a secondary quality check.  The 
statistical quality measure suggested for use is the percent within limits (PWL) procedure 
stipulated by the American Association of State Highway and Transportation Officials 
(AASHTO) in R-009-05, Standard Recommended Practice for Acceptance Sampling Plans for 
Highway Construction, and R042-06, Recommended Practice to Develop a Quality Assurance 
Plan for Hot-Mix Asphalt.  This method differs from the current provision by combining the 
average and standard deviation into a single measure, which is the PWL. 

 
For the effective application of any quality acceptance plan, including the PWL, 

“appropriate” process limits should be used.  What is meant by “appropriate” is that these limits 
should work for both the contractor and the specifying agency; therefore, these limits should be 
achievable by the contractor within reasonable effort.  Perhaps the best source of information 
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that can guide the development of process limits is the one obtained from historical information 
about process accuracy and variability (i.e., what are we achieving right now?).  VDOT has a 
wealth of data on the production of asphalt concrete mixtures.  The data are stored in a database 
that contains aggregate gradations, AC and volumetrics (VTM and VMA) for designed and 
produced material.  While available, these data had not been analyzed statistically to evaluate 
variability during production.  Hughes et al. (2007) found that some previously proposed limits 
were not appropriate; the analysis of VDOT’s database can help redefine these limits.   
   

The best ERS would use quality characteristics through which the performance of the 
constructed pavement (or pavement element) can be predicted.  While in the past performance 
prediction has been a difficult task, the new mechanistic-empirical pavement design guide 
(MEPDG) that resulted from the National Cooperative Highway Research Program (NCHRP) 
Project 1-37A presents a viable solution.  With appropriate calibration, the MEPDG can 
potentially provide a tool for pavement performance prediction.  The drawbacks of using the 
MEPDG for this purpose are the large number of input variables needed and the relatively long 
time required to run the MEPDG software.  To address these drawbacks, Witczak of Arizona 
State University suggested developing performance prediction equations based on specific pre-
solved inputs to the MEPDG.  Given acceptable accuracy of these equations, they can be used as 
a simpler and faster alternative to the MEPDG to predict pavement performance. 

 
 

PURPOSE AND SCOPE 
 

 The purpose of this study was to continue the move toward ERSs for asphalt concrete 
materials and construction by building on the latest results from Hughes et al. (2007).  The study 
also extends the efforts toward performance-related ERSs using the dynamic modulus to align 
with national initiatives to apply the concepts of mechanistic-empirical analysis and design.  The 
scope of this study was: 

 
• Analyze historical data from asphalt concrete production to help develop realistic 

specification limits.  These include volumetric data such as VTM, liquid asphalt AC, 
and VMA.  

 
• Use the analysis of historical data to evaluate different acceptance plans that can 

combine multiple quality measures for implementation as ERSs. 
 
• Evaluate the potential use of the dynamic modulus as a quality measure for rutting of 

asphalt concrete mixes. 
 

METHODS 
 

Contractor Volumetric Data Analysis 
 

VDOT’s central database was queried for contractor test results of the AC, VTM, and 
VMA.  Average, variance, correlation, and normality assumptions were evaluated for 2006 
through 2008.  Process variation is relevant to setting specification limits of an acceptance plan 
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while data normality is an important characteristic as it is an assumption made in most 
acceptance plans. 
 

Evaluate Different Acceptance Plans 
 

A total of five acceptance plans with different levels of complexity were investigated.  
These included (1) a simple plan that combines average and standard deviation, (2) a PWL 
approach for a single variable using the minimum variance unbiased (MVU) estimator, (3) a 
PWL approach for a single variable using the maximum likelihood (ML) estimator, (4) a 
multivariable PWL approach using the MVU estimator, and (5) a multivariable PWL approach 
using the ML estimator. 
 

Mix Rutting Performance Prediction from Dynamic Modulus 
 

The final task sought to develop a procedure that uses the dynamic modulus as a quality 
measure for rutting potential of asphalt concrete mixes.  This procedure was conducted to reflect 
the current efforts to evaluate the dynamic modulus as a performance-related quality measure as 
part of NCHRP Project 9-22 and NCHRP Project 9-30A, both of which are expected to be 
completed in 2010.  The MEPDG was used to evaluate the rutting potential of the mixes.  To 
reduce the number of tests, an effective reduced frequency (defined as the reduced frequency at 
which the dynamic modulus best correlates with the asphalt concrete rutting) was determined 
and calculated using the MEPDG.  This would significantly reduce testing time, thereby making 
the test better suited for an acceptance plan.  Samples collected from three different resurfacing 
projects were used to evaluate and illustrate the procedure. 

 
 

RESULTS AND DISCUSSION 
 

VTM, AC, and VMA Process Variability 
 

Analysis of historical volumetric properties can give valuable information to help 
develop specification limits for a quality assurance (QA) acceptance plan.  The analysis 
performed identified the current process variation and the correlation between the different 
variables.  Process variation is essential in determining realistic specification limits, while 
correlation between the different variables will affect the choice of an analysis method.  The 
volumetric properties used are the VTM, AC, and VMA.  The statistical parameters investigated 
are process mean, variance (or standard deviation), normality assumptions, and correlation 
between the variables (VTM, AC, and VMA). 

 
Voids in Total Mix (VTM) 
 

The VTM is defined as the percentage by volume of air voids in the mix.  The VTM is 
the primary design parameter in the Superpave mix design procedure where a target VTM 
(generally 4%) is set at a certain number of design gyrations (using the Superpave gyratory 
compactor).  This target VTM is achieved by adjusting the AC.  The VTM affects the mix 
performance and ultimately the pavement performance in terms of distress development. 
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VTM Process Mean and Variance 
 

Figure 1 shows the laboratory measured VTM for all mixes used during the 2006, 2007, 
and 2008 paving seasons versus the target VTM as reported in the job-mix formula (JMF) sheet.  
Mixes were combined after a preliminary analysis of the VTM revealed statistical measures 
(mean and standard deviation) did not depend on the mix type (BM, IM, SM, and SMA).  Figure 
1 is based on more than 10,000 observations included in VDOT’s central database.  No data 
subdivision into project, district, or asphalt plant was undertaken.  VDOT requires mixes to be 
designed for a VTM of 4% according to Superpave.  However, the approved JMF VTM is not 
always 4%.  After inquiring with the Districts Materials Divisions it was found that deviations 
from the 4% target VTM can be due to two main reasons: (1) when trial batches achieve a VTM 
close to 4%  (e.g., 3.8% to 4.2%), this percentage will be approved by the district as it is deemed 
“close enough” to 4% for all practical reasons; and (2) sometimes, based on experience, districts 
will approve a VTM different than 4% (e.g., 3%) knowing this is the required laboratory VTM 
the contractor has to use to achieve appropriate field compaction.  For a target VTM greater than 
3%, the average laboratory VTM was lower than the target VTM (calculated average falls under 
the line of equality).  The difference increased with an increasing target VTM.  Not enough test 
data are available to make a definitive conclusion below a 3% design VTM, although it seems 
the measured VTM is greater than the target VTM. 

 

 
Figure 1.  Measured VTM vs. target VTM. 

 
The standard deviations at each target VTM are presented in Figure 2.  The standard 

deviations varied between 0.49 and 1.11%.  These two extrema are for a target VTM of 2.8 and 
2.9% and are based on 21 and 126 measurements, respectively, and therefore cannot be 
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considered very representative of the actual population standard deviation.  Most VTM 
measurements were taken for a target VTM between 3.5 and 4.0% for which the standard 
deviation varied between 0.78 and 0.89%.  Bartlett’s test for equal VTM variance (square of the 
standard deviation) was performed on measurements taken for a target VTM between 3.5 and 
4.0%.  The test result rejected the hypothesis that the variances at different target VTMs are 
equal.  Although statistical analysis rejected the assumption of equal variances, the difference 
between 0.78 and 0.89% is relatively small from a practical engineering perspective so that a 
pooled standard deviation would be appropriate to characterize the process variation.  The pooled 
standard deviation was calculated as 0.86% using Equation 1. 

 

          (Eq. 1) 

where 
 
  pooled standard deviation 
  standard deviation at a specific VTM 
  number of samples at a specific VTM 
 

 
Figure 2.  VTM standard deviation. 

Normality Test 
 

Normality of the process is important due to the fact that most statistical data analysis 
methods such as the PWL were developed under the assumptions of normality.  Deviations from 
normality can cause statistical measures to be incorrectly calculated.  For example, Burati and 
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Weed (2006) investigated the effect of deviation from normality on the calculation of the PWL 
by simulating distribution with different skewnesses.  Figure 3 shows the VTM cumulative 
distribution for a target VTM of 4% for all mixes (BM, IM, SM, and SMA).  Graphically, the 
figure suggests that the measured VTM follows more or less a normal distribution with an 
average of 3.5%, which is less than the target 4%.  However, the distribution failed Pearson’s 
Chi-square test, D’Agostino’s K-squared test, and the Anderson-Darling test for normality.  
Deviations from normality are more easily observed when the VTM histogram shown in Figure 4 
is compared to the normal distribution with average and standard deviation calculated from the 
experimental data.  Figure 4 suggests there are two peaks at approximately 3.5% and 4.6%.  
Further analysis showed that these two peaks are also observed when the data are analyzed 
according to the mix type (BM, IM, SM, and SMA) and therefore cannot be attributed to 
different mixes having a different average VTM.  To illustrate the two peaks, a binormal (sum of 
two normal distributions) distribution was fit to the data as shown in Figure 4.  The binormal 
distribution is defined according to Equation 2. 

 
                            (Eq. 2) 
 
where 
 

 = binormal distribution 
 and = normal distribution with different parameters 

μ = mean of the normal distribution 
σ = standard deviation of the normal distribution 
α = parameter between 0.5 and 1 

 
The parameters α, μ1,μ2,σ1,and σ2 are determined to provide the best fit to the 

experimental data.  For the case of a 4% target VTM, α was calculated as 0.96, and μ1, μ2, σ1, 
and σ2 were calculated as 3.50%, 4.73%, 0.78%, and 0.15%, respectively.  This suggests most of 
the data (96%) comes from a single normal distribution while deviations from normality are due 
to 4% of the experimental data.  Causes for the deviations from normality are not easily 
determined; however, possible causes can be attributed to a specific production plant or a 
specific production period where, for some reason, the process had different characteristics. 

 
The skewness calculated for the data consisting of a 4% target VTM was 0.1 (note that 

skewness is independent of the magnitude of the test data).  Based on the results presented by 
Burati and Weed, this number is likely too low to appreciably affect the calculations of the PWL 
compared to the case where the data are normally distributed. 
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Figure 3.  Cumulative VTM distribution for design VTM of 4%. 

 
 

 
Figure 4.  VTM histogram for 4% target VTM. 

 
Confidence Intervals for the Mean and Standard Deviation 

 
Confidence intervals for the process mean and standard deviation for different sample 

sizes were determined assuming the VTM standard deviation is equal to 0.86% (pooled standard 
deviation).   This was chosen as it represents a realistic achievable process variation as evidenced 
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from the analysis of the VTM data.  From the central limit theorem, averages calculated from 
data sampled from any statistical distribution tend to be normally distributed with the standard 
deviation calculated according to Equation 3. 

 
                                                       (Eq. 3) 
 
where 

 
σ = population standard deviation (0.86%) 
σµ = standard deviation of mean response of n samples 
n = number of samples 

 
From the standard deviation, confidence intervals for the mean response can be obtained 

for different confidence levels as presented in Table 1.  These can be interpreted as such for the 
case of a sample size of three samples: 99% of the time, the calculated mean will fall within 
1.29% distance from the actual mean response (assuming the process standard deviation is equal 
to 0.86%).  Therefore, calculated mean values that are more than 1.29% away from the design 
process mean (for example, 4%) are very unlikely (occurs 1% of the time) so that it can be 
assumed that the actual achieved mean is different from 4%. 

 
Table 1. VTM confidence interval of mean response for different sample sizes 

Confidence Interval for Different Percentages Sample Size 
99 95 90 80 70 60 50 40 30 20 10 5 

3 1.29 0.98 0.82 0.64 0.52 0.42 0.34 0.26 0.19 0.13 0.06 0.03 
4 1.11 0.84 0.71 0.55 0.45 0.36 0.29 0.23 0.17 0.11 0.05 0.03 
5 0.98 0.74 0.63 0.49 0.39 0.32 0.26 0.20 0.15 0.10 0.05 0.02 
6 0.90 0.69 0.58 0.45 0.36 0.29 0.24 0.18 0.13 0.09 0.04 0.02 
7 0.85 0.65 0.54 0.42 0.34 0.28 0.22 0.17 0.13 0.08 0.04 0.02 
8 0.77 0.59 0.49 0.38 0.31 0.25 0.20 0.16 0.12 0.08 0.04 0.02 
9 0.75 0.57 0.48 0.37 0.30 0.24 0.20 0.15 0.11 0.07 0.04 0.02 

10 0.70 0.53 0.44 0.35 0.28 0.23 0.18 0.14 0.10 0.07 0.03 0.02 
12 0.64 0.49 0.41 0.32 0.26 0.21 0.17 0.13 0.10 0.06 0.03 0.02 
15 0.57 0.43 0.36 0.28 0.23 0.19 0.15 0.12 0.08 0.06 0.03 0.01 
20 0.49 0.37 0.31 0.24 0.20 0.16 0.13 0.10 0.07 0.05 0.02 0.01 
30 0.41 0.31 0.26 0.21 0.17 0.13 0.11 0.08 0.06 0.04 0.02 0.01 
40 0.36 0.27 0.23 0.18 0.15 0.12 0.09 0.07 0.05 0.04 0.02 0.01 
50 0.31 0.24 0.20 0.15 0.12 0.10 0.08 0.06 0.05 0.03 0.02 0.01 
100 0.23 0.18 0.15 0.12 0.09 0.08 0.06 0.05 0.03 0.02 0.01 0.01 
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Table 2.  VTM confidence interval for the standard deviation for different sample sizes 
Confidence Interval for Different Percentages Sample Size 

99 95 90 80 70 60 50 40 30 20 10 5 
3 1.85 1.49 1.30 1.09 0.94 0.82 0.72 0.61 0.51 0.41 0.28 0.19 
4 1.67 1.39 1.24 1.07 0.95 0.85 0.76 0.68 0.59 0.50 0.38 0.29 
5 1.57 1.32 1.20 1.05 0.95 0.86 0.79 0.71 0.64 0.55 0.44 0.36 
6 1.49 1.28 1.17 1.04 0.95 0.87 0.80 0.74 0.67 0.59 0.49 0.41 
7 1.44 1.25 1.15 1.03 0.94 0.87 0.81 0.75 0.69 0.62 0.52 0.45 
8 1.40 1.22 1.13 1.02 0.94 0.88 0.82 0.76 0.70 0.64 0.55 0.48 
9 1.36 1.20 1.11 1.01 0.94 0.88 0.82 0.77 0.71 0.65 0.57 0.50 

10 1.33 1.18 1.10 1.00 0.94 0.88 0.83 0.78 0.72 0.66 0.59 0.52 
12 1.29 1.15 1.08 0.99 0.93 0.88 0.83 0.79 0.74 0.69 0.61 0.55 
15 1.24 1.12 1.05 0.98 0.93 0.88 0.84 0.80 0.76 0.71 0.64 0.59 
20 1.19 1.08 1.03 0.96 0.92 0.88 0.84 0.81 0.77 0.73 0.67 0.63 
30 1.12 1.04 1.00 0.95 0.91 0.88 0.85 0.82 0.79 0.76 0.71 0.67 
40 1.09 1.02 0.98 0.94 0.90 0.88 0.85 0.83 0.80 0.77 0.73 0.70 
50 1.06 1.00 0.97 0.93 0.90 0.88 0.85 0.83 0.81 0.78 0.75 0.72 

100 1.00 0.96 0.94 0.91 0.89 0.87 0.86 0.84 0.83 0.81 0.78 0.76 
 
Unlike the confidence intervals for the mean response, confidence intervals on the 

standard deviation are based on the assumption that the data are normally distributed.  In this 
case, the sample variance follows a chi-square distribution (Equation 4). 

 
                                                      (Eq. 4) 
 

The confidence intervals for the process standard deviation for different sample sizes are 
presented in Table 2.  These intervals extend from zero to the value reported in the table.  These 
can be interpreted as such for the case of a sample size of three samples: 99% of the time, the 
calculated standard deviation will be less than 1.85% (assuming the process standard deviation is 
equal to 0.86%). 
 
Asphalt Content (AC) 

 
The AC is defined as the percentage by weight of asphalt binder in the mix.  In the 

Superpave mix design procedure, the AC is adjusted to achieve the target VTM.  To determine 
process variability, the AC content was analyzed for all mixes (SM, BM/IM, and SMA).  The 
AC distribution (histogram) for 2008 is presented in Figure 5.  Initial analysis of the data showed 
they were not normally distributed; rather it revealed two prominent peaks at approximately 
4.4% and 5.4% and a less prominent peak at 6.4%.  Further analysis of the data showed these 
peaks corresponded to the average AC for the BM and IM, SM, and SMA, respectively.  Further 
analysis of each mix type showed that the data were normally distributed (Figure 5) according to 
D’Agostino’s K-squared test for normality; however, it fails Pearson’s Chi-square test and the 
Anderson-Darling test.  The mean and standard deviation for each mix type (BM/IM, SM, and 
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SMA) are presented in Table 3.  As expected, coarser mixes required less AC while the SMA 
required the most AC. 

 

 
  Figure 5.  AC distribution (2008) 

 
Table 3.  Mean and standard deviation measures of AC for all mixes 

BM/IM SM SMA 
Year Average Standard 

Deviation Average Standard 
Deviation Average Standard 

Deviation 
2008 4.44 0.29 5.32 0.30 6.45 0.41 
2007 4.33 0.25 5.24 0.32 6.39 0.45 
2006 4.34 0.28 5.28 0.32 6.22 0.45 

 
Confidence Intervals on Mean and Standard Deviation 

 
Confidence intervals for the AC process mean and standard deviation for different sample 

sizes were determined assuming the AC standard deviation, which is equal to 0.3%.  The 0.3% 
was chosen as a compromise reflecting the standard deviation of the SM and BM/IM mixes.  The 
SMA was not considered because of the relatively small percentage of SMA used in paving 
projects (less than 10%).  The confidence intervals for the process mean and process standard 
deviation for the AC are presented in Appendix A. 

 
Correlation Between the VTM and AC 

 
Correlation among acceptance measures determines what acceptance sampling plan to 

use.  High correlation among acceptance measures requires acceptance plans that take the 
correlation into account, while low correlation can be ignored as it does not sensibly affect the 
results.  How to handle multivariate acceptance using the PWL for the correlated and 
uncorrelated cases is illustrated later in the report. 
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Figure 6.  VTM-AC plot for SM mixes and 4% target air voids 

 
A plot of the VTM versus the AC is presented in Figure 6.  The general trend shows a 

decrease in the VTM with increase in the AC.  This is expected as an excess binder added to the 
mix fills the available air voids.  Although there is a general trend relating the VTM to the AC, 
the calculated correlation of -0.28 (the negative sign is because an increase in one variable results 
in a decrease in the other) between the two variables is not very high, and much of the variation 
in one of the two variables is independent of the other. 
 
Voids in Mineral Aggregates 
 

The VMA was suggested to be included in a quality acceptance plan by Hughes et al. 
(2007) as it is already measured by VDOT.  The average VMA for all mixes from 2006 to 2008 
are presented in Table 4.  These fall within VDOT specifications (VDOT, 2007).  The 
differences between the means are all statistically significant. The BM had the lowest average 
VMA values while the SMA had the highest average VMA values.  The VMA distribution for 
SM9.5 mixes is presented in Figure 7.  This distribution failed all three tests of normality.  Two 
theoretical distributions are plotted to illustrate the deviations from normality.  The first 
distribution is the normal distribution with the average and standard deviation taken from Table 4 
(16.15% and 0.92%).  The second distribution is the skew normal distribution, which provides a 
better representation of the experimental data.  The standard skew normal distribution is defined 
as: 

 
                                                 (5) 

 
where 
 

 = standard skew normal distribution 
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 = standard normal distribution 
 = standard cumulative normal distribution 

 = shape parameter related to skewness (for  = 0, the standard normal distribution is 
recovered) 
 

The skew normal distribution is provided to illustrate the experimental data’s deviation 
from normality.  Note that although the skew normal distribution provides a better representation 
of the experimental data, it still fails Pearson’s goodness of fit test (though not as “poorly” as the 
normal distribution). 

 
Table 4.  Mean, standard deviation, and skewness measures for the VMA 

Mix Average (%) Standard Deviation (%) Skew 
SM9.5 16.15 0.92 0.479 
SM12.5 15.61 0.88 0.613 
BM 13.84 1.00 -0.005 
SMA 18.18 1.09 0.615 

 

 
Figure 7. Measured VMA for SM9.5 

 
Confidence Intervals on Mean and Standard Deviation 
 

Similar to the case for the VTM and AC, confidence intervals on the process mean and 
standard deviation for the VMA for different sample numbers were determined assuming the 
VMA standard deviation is equal to 1.0% (based on results from Table 4).  The 1.0% was chosen 
as a single value compromise for all mix types.  The results of process mean and process 
standard deviation for the VMA are presented in Appendix A. 
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Correlation Between the VMA, VTM, and AC 
 

Correlation between the different performance measures should be considered for proper 
statistical evaluation.  Failure to recognize this may lead to erroneous results, especially when the 
correlation is high.  The correlation between the VTM, VMA, and AC is presented in Table 5.  
Table 5 shows that, to some degree, all three measures are correlated.  The largest correlation is 
between the VTM and VMA (around 0.65) followed by the VMA and AC (around 0.4) and the 
VTM and AC (around -0.25).  Since all three measures are correlated, the partial correlation 
between the VTM and VMA with the effect of the AC removed (Equation 6) was calculated with 
results ranging between 0.81 and 0.85.    This strong correlation is expected since the VMA is a 
measure of total volume that does not consist of the aggregate skeleton and comprises the 
effective binder volume and the VTM.  To visualize the correlation between the VMA as the 
dependent variable and the VTM and AC as the independent variables, a multiple linear 
regression was performed.  The results are presented in Figure 8 where the VMA calculated from 
the regression model (regressed VMA) is plotted against the measured VMA.  This shows that 
the VMA can be fairly well estimated from the VTM and AC. 

 
                           (Eq. 6) 

where 
 

 = partial correlation between the VTM and VMA with the effect of the AC 
removed 

 = correlation between the VTM and VMA 
 = correlation between the VTM and AC 
 = correlation between the VMA and AC 

 
 

Table 5. Correlation between the VTM, AC, and VMA 
Correlation Mix 

VTM/VMA VTM/AC VMA/AC VTM/VMA.AC 
SM9.5 0.66 -0.23 0.38 0.83 
SM12.5 0.58 -0.33 0.43 0.85 
BM 0.63 -0.22 0.45 0.84 
SMA 0.68 -0.25 0.27 0.81 
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Figure 8.  Comparison between predicted VMA and measured VMA 

 
QA Acceptance Plans 

 
Different acceptance sampling plans are presented in this section.  These plans range 

from the simple plan that considers each quality measure (i.e., the VTM, AC, and VMA) 
separately without considering data correlation and by using a simple empirical method of 
combining the process mean and variation (standard deviation) to the fully three-dimensional 
PWL procedure that takes into account the correlation between the three quality measures.  Some 
of the advantages and disadvantages of each method are also pointed out. 

 
Simple Plan Combining Averages and Standard Deviations 
 

The main advantage of this acceptance plan is its simplicity in combining the process 
average and standard deviation, making it easier to implement than the PWL procedure.  The 
main disadvantage of the plan is that it combines average and standard deviation in an empirical 
way.  The procedure presented here is based on the developed confidence intervals for each 
quality measure.  Since these confidence intervals were established based on historical data 
during a three-year period, they are assumed to reflect the current level of control contractors are 
achieving.  Measured averages and standard deviations that fall within smaller confidence 
intervals suggest better process control than values that fall within larger intervals.  For example, 
a sample calculated average that falls outside the 95% confidence interval suggests (with a high 
probability) that the actual population average is different than the target average.  On the other 
hand, a sample calculated average that falls within the 5% confidence interval suggests (with 
high probability) that the actual population average is very close to the target average.  A similar 
argument can be made for the process standard deviation.  In other words, values that fall within 
smaller confidence intervals for both the average and standard deviation are the “best,” while 
values that fall outside large confidence intervals for both average and standard deviation are the 
“worse” in terms of achieving the target value with high accuracy.  This idea can be visually 
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illustrated in a matrix as shown in Table 6.  Table 6 shows a division of the acceptance-rejection 
regions based on where the calculated average and standard deviation fall within the different 
confidence intervals.  The subdivisions presented here are for illustration, and a final subdivision 
would be determined based on more information from actual projects.  Also note that in this 
matrix, equal weights are given to the process mean and standard deviation; this does not have to 
be the case.  Another possible way of combining the process mean and standard deviation is to 
determine a weighted arithmetic mean or a weighted geometric mean of the confidence interval 
for the processes.  The weighted arithmetic mean and weighted geometric mean are determined 
according to Equations 7 and 8, respectively. 

 
                                                     (Eq. 7) 

 
                            (Eq. 8) 

 
For the case where two or more variables are monitored, a weighted arithmetic mean or 

geometric mean can be used to combine the variables into one single measure. 
 

Table 6. Matrix for proposed acceptance plan 
 Confidence Interval for Standard Deviation 
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95                                       
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   Reject          Pay Factor 1      
   Pay Factor 0.9       Pay Factor 1.02     
   Pay Factor 0.95       Pay Factor 1.05     
   Pay Factor 0.98               
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PWL Procedure 
 
Single Variable Case 
 

The PWL procedure is well known among state departments of transportation (DOTs).  
Tables have been published to calculate the PWL for a single variable based on calculated 
average and standard deviation.  In this report, a summary of the PWL procedure for single 
variable and multivariate acceptance sampling is presented. 

 
The PWL method stipulated by the AASHTO was developed by Lieberman and 

Resnikoff (1955) as sampling plans for inspection by variables for a single normally distributed 
quality characteristic.  Based on a collected sample from the population, the PWL is the MVU 
estimator of the percentage of the population that falls within the specification limits; i.e., the 
process conforming (PC).  An unbiased estimator of a parameter is an estimator whose expected 
value is equal to the parameter (i.e., the average of different estimations tends to equal the 
parameter).  A parameter can have more than one unbiased estimator, and the MVU estimator is 
the one that has the lowest variance among unbiased estimators (i.e., the standard deviation of 
different estimations is the smallest).  Other estimators of the PC have been used (these are not 
referred to in the PWL that is known by the transportation industry) such as the ML estimator 
that uses the normal distribution with the ML estimates of the mean [ ] and standard 
deviation [ ] and the slightly modified version of the ML estimator referred 
to as an MLS estimator, where the S stands for the unbiased estimate of the standard deviation, 
that uses the normal distribution with the ML estimate of the mean and the unbiased estimate of 
the standard deviation [ ] (Hamilton and Lesperance, 1995).  These 
are biased estimators.  The word biased sometimes has the stigma of being “bad,” unfair, or 
influenced by a type of prejudice; however, this is not the case in the statistical meaning of bias 
of an estimator, and, in many cases, biased estimators can have more desirable properties than 
unbiased ones.  For example, biased estimators can sometimes provide an estimate that is closer 
to the actual parameter, as illustrated in Figure 9.  In this case there is a given parameter whose 
real value is 0.  Two methods of estimating this parameter give rise to the two normal 
distributions presented in the figure.  The unbiased method of estimation is the one whose mean 
is equal to the parameter value of 0, while the biased method of estimation has a mean different 
than the parameter value of 0 (in this case the mean of the biased estimation is 0.2).  Clearly in 
this example, the biased estimation is much more accurate than the unbiased one as any single 
estimation has a much higher probability of being closer to the actual parameter value than the 
case for the unbiased estimation method. 
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Figure 9.  Illustration of biased and unbiased estimation methods 

 
The MVU PWL (the one stipulated by the AASHTO) is calculated according to Equation 9. 
 
   (Eq. 9) 
 
where 
 

% within limits (MVU estimator of% conforming) 
;  

;  
 beta probability density distribution with  

 
The ML and the MLS PWL are calculated according to Equation 10. 
 
                                        (Eq. 10) 
where 
 

 ML estimator of% conforming 
 standard normal probability density function 

 for MLS and  for ML 

 for MLS and  for ML 
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Note that the MVU estimator is sample size-dependent (beta distribution depends on n) 
while the ML and MLS estimators are independent of the sample size.  All three estimators 
converge to the same actual value as the sample size increases ( ). 

 
Multivariate Case 
 

Baillie (1987) extended the work of Lieberman and Resnikoff and determined the MVU 
estimator of the PC (or the PWL) for multivariate acceptance sampling.  Hamilton and 
Lesperance (1995) presented the ML and MLS estimators of the PC and compared it with the 
MVU estimator.  For the case of uncorrelated variables and equally important quality measures, 
the% conforming considering all variables is the product of the% conforming of each individual 
variable calculated using any of Equation 9 or 10 (Baillie, 1987).  This is expressed in Equation 
11. 
 
                                                     (Eq. 11) 
 
where 
 
  total process conforming (PWL) 
  process conforming (PWL) for variable j calculated using either the MVU, ML, or 
MLS method 

 
For the case of correlated variables, Baillie (1987) determined the MVU estimator of the 

PC for the case of multivariate acceptance sampling as: 
 

            (Eq. 12) 

where 
 
  MVU estimator of the PC (or the PWL) 
  = gamma function 
  = m × m sample correlation matrix 
 total number of samples 
  total number of variables 
  region of intersection of m-dimensional ellipsoid   and m-dimensional 
rectangle  
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The procedure requires that .  Hamilton and Lesperance (1995), argued that 
the evaluation of the integral is quite difficult even for the case of .  An alternative to 
using the MVU estimator is to use the ML estimator.  In this case, the PC can be estimated as: 

      (13) 

where 
 
 m-dimensional multivariate normal distribution 
  is the sample average 
  is the sample covariance matrix 
  = m-dimensional conformance region. 
 

If the characteristics have lower and upper specification limits, denoted Li and Ui for i = 
1,…,m, then  is the m-dimensional rectangle.  The procedure is valid for . 

 
Comparison of the MVU and ML Estimators 
 

Hamilton and Lesperance (1995) compared the MVU and ML estimators of the PC.  
They investigated the operating characteristic (OC) bands, the practical considerations in the 
application of each method, the acceptance regions, and the properties of the estimators.  Their 
results are summarized as follows: 
 

1. OC Bands: Narrow OC bands are desirable as this ensures that producers with equal 
overall quality are treated the same.  It also ensures that, for the most part, lots of 
higher quality has a higher probability of acceptance than lots of lower quality.  For 
most of the cases investigated, the MVU method yielded slightly narrower OC bands. 

 
2. Practical Considerations: In multivariate acceptance sampling, the estimation of the 

PC (or the PWL) requires the evaluation of a multidimensional integral (Equations 12 
and 13).  For the ML and MLS methods, this involves integrating the m-dimensional 
normal distribution over an m-dimensional hypercube.  This is easily performed by 
numerical software such as MATLAB.  For the MVU method, the function to be 
integrated and the region of integration are much more complicated.  As a result, 
Monte Carlo integration seems the only practical method, and a very large time-
consuming simulation is needed for acceptable accuracy. 

 
3. Acceptance Region: The acceptance region is defined as the combination of the 

process mean and standard deviation for which the PC is larger than the acceptable 
quality level (AQL).  In general, when lower and upper specification limits are 
specified, the maximum allowed standard deviation for acceptance is achieved when 
the process mean is halfway between the upper and lower specification limits.  As the 
process mean shifts toward either end of the specification limits, the maximum 
allowed standard deviation decreases.  This is true for the double specification-limit 
univariate case except for the MVU method with n=3.  In this case, the maximum 
allowed standard deviation occurs at values for the mean process slightly shifted 
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away from the middle of the specification limits (which most of the time represents 
the target value).  This can be illustrated for specification limits on a mix VTM.  
Suppose the target VTM is 4% with upper and lower specification limits of 5 and 3%, 
respectively.  If the sample number n=3, the contractor is then encouraged not to 
achieve the 4% VTM but a lower or a higher VTM value between 3 and 5%.  The 
exact amount of shift is dependent on the AQL. 

 
4. Properties of the Estimators: It was observed that, for most cases, the difference 

between the ML estimator of the PC and the actual PC is lower than the difference 
between the MVU estimator of the PC and the PC.  The same can be said for the 
MLS estimator versus the MVU estimator. 

 
Application to the VDOT VTM, AC, and VMA Data 
 

The comparison of the different methods was performed using the SM9.5 data for the 
years between 2006 and 2008, including all districts and asphalt plants.  The mean and 
covariance of the data set is presented in Table 7.  These are assumed to represent the population 
parameters (since they represent more than 5,000 data points).  The upper and lower limits are 
also presented in Table 7.  These were chosen as the 95% confidence interval for each quality 
measure based on the calculated standard deviations.  The actual PWL, assuming uncorrelated 
data, can therefore be calculated using Equation 11.  This will be 0.8574 (0.953).  The actual 
PWL, assuming correlated data, can be calculated using Equation 13.  This was calculated as 
0.8747. 

 
 Table 7.  Statistical parameters used for the simulation 

 VTM AC VMA 
Mean 3.43 5.30 16.15 

VTM 0.753 -0.062 0.526 
AC -0.062 0.096 0.108 Covariance 
VMA 0.526 0.108 0.843 

Upper specification Limits 5.13 5.91 17.94 
Lower specification Limits 1.73 4.69 14.35 
 

A numerical simulation of 500 tests each comprising six samples randomly selected from 
the multivariate normal distribution with parameters presented in Table 7 was performed using 
the MATLAB.  For each test, the PWL was calculated using the MVU estimator and the ML 
estimator, assuming both correlated and uncorrelated data, and then compared to the actual PWL 
(0.8747).  For correlated data, the MVU estimator is calculated using Equation 12 while the ML 
estimator is calculated using Equation 13.  The distribution of the calculated PWL is presented in 
Figure 10.  Figure 10 shows that the ML estimator of the PWL produced more results between 
0.82 and 0.94 than the MVU estimator.  The average PWL for the ML and MVU estimators were 
0.8797 and 0.8781, respectively, showing that the average of the MVU estimator was slightly 
closer to the actual value of 0.8747.  Of the 500 simulated tests, the ML method gave a PWL that 
is closer to the actual PWL in 439 of the cases (88%) when compared to the MVU method.  For 
the calculation of the PWL, the ML method requires the evaluation of the cumulative probability 
distribution of the multivariate normal distribution, which is already implemented in the 
MATLAB.  For the MVU method, calculation of the PWL requires the evaluation of the integral 
in Equation 12.  The integral was evaluated numerically using the Monte-Carlo integration.  A 
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considerable number of points are required for accurate results, and the simulation of 500 tests 
took more than two hours on a typical desktop computer.  Taking into account the method’s 
complexity, computational speed, and accuracy in determining the PWL, the ML method seems 
to be a viable alternative to the MVU method.  

 
Figure 10.  Comparison of multivariate ML and MVU estimators of the PWL 

 
While the ML method for correlated variables is easily implemented in the MATLAB, it 

is still not convenient for everyday QA applications.  When the quality measures are 
uncorrelated, the PWL is easily calculated using Equation 11 with the individual pi’s calculated 
as in the case of a single variable.  Using Equation 11 to calculate the PWL for correlated data 
would therefore significantly simplify the analysis, although the method is not 100% correct.  
This was performed using the MVU and ML methods.  The results using the uncorrelated ML 
method are compared to the results using the correlated ML method in Figure 11.  Figure 11 
shows that assuming uncorrelated data provides reasonable results compared to when correlation 
is taken into account.  The average results for the ML uncorrelated estimator over the 500 
simulated tests is 0.8567 (which is close to the uncorrelated PWL of the population of 0.8574), 
while the average results for the ML correlated estimator is 0.8797, which is closer to the actual 
PWL of 0.8747.  Of the 500 simulated tests, the ML uncorrelated method surprisingly resulted in 
a PWL that is closer to the actual PWL in 260 of the cases (52%) when compared to the ML 
correlated method; however, it resulted in a greater number of low estimates (<0.7) as can be 
observed in Figure 11.  With the results presented here, it seems assuming the VTM, AC, and 
VMA are uncorrelated is a viable alternative that is very simple to implement and does not lead 
to significant errors in estimating the PWL.  This should, however, be further investigated for 
more cases of actual PWL and for different levels of correlations. 
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Figure 11.  Comparison of a correlated and uncorrelated ML estimator of the PWL 

 
Selecting an Acceptance Plan 
 

Selection of an acceptance plan requires a trade-off between accuracy and complexity.  
At a minimum, the process mean and variation (standard deviation) should be included such as in 
the simple plan presented earlier; however, the method does not provide an estimate for the 
percentage conforming to specifications.  For this purpose, the PWL should be used.  The PWL 
allows for univariate or multivariate sampling and estimation methods, including the ML and 
MVU estimations.  Univariate plans can be used along with Equation 11 when variables in a 
multivariate sampling plan are “uncorrelated” (more practically, have low correlation).  The 
benefits of incorporating correlated measures should be carefully weighed against the 
complexities introduced in the PWL procedure.  From a statistical perspective, correlated 
variables, depending on the correlation level, do not provide significant new information.  For 
this purpose, the argument to include correlated variables should mainly be based on engineering 
experience and judgment.  In this case, the ML method is a viable alternative to the MVU 
method as it is simpler to calculate and seems to provide accurate estimations of the PWL.   
However, the MVU method has the advantage of resulting in slightly narrower OC bands 
(Hamilton and Lesperance, 1995).   

 
Dynamic Modulus As a Quality Measure 

 
Performance-Related Specifications 
 

In performance-related specifications (PRSs), the acceptance/rejection/pay factor is based 
on predicted pavement performance in terms of distresses such as rutting or fatigue cracking.  
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This requires performance prediction models that can relate quality measures (such as the VTM, 
AC, VMA, and gradation) for the case of the mix or field density, smoothness, and the FWD test 
results for the case of pavement to predicted pavement performance (such as rutting or fatigue 
cracking).  Variations in the input parameters (the VTM, AC, VMA, smoothness, etc.) will result 
in variation in the predicted distresses.  This can be quantified in terms of reduction or an 
increase in pavement life and, with an appropriate application of life cycle cost analysis (LCCA) 
tools, can be translated into monetary values.  With the approval of the MEPDG by the 
AASHTO, the framework for performance prediction models is now available.  NCHRP Project 
9-22, which is expected to be completed in 2010, takes advantage of these performance 
prediction models to develop a framework for the PRS.  Three advantages of such an approach 
are as follows: 

 
1. This approach takes material properties as input that results in the prediction of 

pavement performance.  That is, it integrates all the individual quality indicators (the 
VTM, AC, VMA, smoothness, etc.) into a single value (asphalt concrete rutting, 
fatigue cracking) that can be used as a basis for pay adjustment. 

 
2. As-designed predicted pavement performance can be compared to as-built predicted 

pavement performance, which provides actual loss/gain in predicted pavement life.  
Pay factors can be developed based on the predicted loss/gain of pavement life 
through the use of life-cycle cost analysis.  This will reward contractors that perform 
better than expected and penalize contractors that perform worse than expected. 

 
3. True PRSs promote innovation and advancement in production and construction 

methods by rewarding and encouraging contractors that strive to improve the product 
they deliver. 

 
 While the methodology is quite promising, numerous obstacles need to be overcome for 
successful implementation.  Some of these include: 
 

• Calibration of performance prediction models; this requires considerable effort as 
proper calibration requires high-quality material data and high-quality performance 
data.  These two data sets would need to be linked; i.e., it is essential to be able to 
identify how certain material parameters affected actual field performance.  This can 
be difficult to obtain as significant performance indicators are usually obtained years 
after construction. 

 
• Performance prediction models can require more input than what would be practical 

in a QA program.  It is therefore essential to identify which inputs have more 
variability and are most critical to performance. 

 
• Performance prediction models can take long periods of time to run on a computer.  

This is the case for the MEPDG, which takes approximately 15 to 25 minutes to run 
on a typical desktop computer.  Considering proper numerical simulations require at 
least hundreds, if not thousands, of iterations, it is easy to see how this can be a major 
obstacle. 



 

 
 

24

In NCHRP Project 9-22, a software program to calculate pavement performance was 
developed based on the MEPDG pre-solved solutions obtained for a number of pavement 
configurations and material parameters.  This allows the simulation to be “instantaneous.”  The 
pre-solved solutions are, however, only valid for conditions similar to the ones investigated in 
NCHRP Project 9-22, especially for the nationally calibrated performance prediction models.  
Therefore, NCHRP Project 9-22 is better used as a model framework for VDOT to develop its 
software based on its calibrated performance prediction models rather than a tool to use for the 
PRS. 

 
Reduced-Frequency Dynamic Modulus 
 

The dynamic modulus is the principal, asphalt concrete material input property in the 
MEPDG.  It has also been suggested as a simple performance test (SPT) for mix rutting and 
fatigue cracking.  Because of its importance as input to the MEPDG and as a potential SPT, the 
dynamic modulus would seem to be a natural choice to be part of end-result and performance-
related specifications.  To this extent, the MEPDG can be used as a QA tool to evaluate the 
potential variation of asphalt concrete rutting due to variations in the asphalt concrete dynamic 
modulus.  One drawback of using the MEPDG is that it requires the dynamic modulus at a wide 
range of temperatures and frequencies to determine the asphalt concrete master curve.  This is 
typically achieved with dynamic modulus tests performed during five different temperatures, 
which would typically require five days of testing.  Katicha et al. (2010) have successfully 
determined an effective reduced frequency for the asphalt concrete dynamic modulus that can be 
used to estimate the asphalt concrete rutting that would be calculated by the MEPDG.  This 
significantly reduces the amount of testing potentially resulting in significant time and cost 
savings. 

Table 8. Mix design gradation and asphalt content 

 Culpeper Staunton Salem 
Mix Designation SM-9.5D SM-12.5A SM-9.5D 

Binder Content 5.65% 6.00% 5.80% 
Sieve Percent Passing 

¾ in' - 100 - 
½ in' 100 96 100 
3/8 in' 90-100 80 90-100 
No. 4 80 Max - 80 Max 
No. 8 38-67 36 38-67 

No. 200 2-10 5 2-10 
 
Loose asphalt concrete samples were obtained from three different resurfacing projects in 

the districts of Culpeper, Staunton, and Salem (Virginia).  The mix design gradation and asphalt 
content are presented in Table 8.  Samples were collected for every day of mix production to 
capture production variability and to see how it might affect asphalt concrete rutting 
performance.  From the collected samples, dynamic modulus specimens were produced and 
tested to determine the master curve.  These curves were used to predict the asphalt concrete 
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rutting performance of a typical flexible pavement using the MEPDG and compared to the 
asphalt concrete rutting performance using the effective reduced frequency. 
 
Specimen Preparation 
 

Once the mixes were collected, representative samples were used to obtain the maximum 
theoretical specific gravity (Gmm) according to AASHTO T-209.  The measured Gmm were 2.724, 
2.399, and 2.480 for mixes obtained from Culpeper, Staunton, and Salem, respectively.  The 
Superpave gyratory compactor was then used to prepare specimens for testing.  A target VTM of 
7% ± 1% was intended for all the specimens (after coring and/or cutting) since it is the air voids 
of newly constructed pavements in Virginia.  The amount of material in kg needed to achieve 
this target VTM was determined from the samples obtained during the first day of production.   

 
This amount was used for the preparation of specimens for the remaining production days 

regardless of the achieved VTM.  It should be noted here that the prepared gyratory specimen is 
six inches in diameter by seven inches in height.  The number of gyrations was left variable to 
achieve the specified height of seven inches.  The prepared gyratory specimen is cut to six inches 
in height and cored to four inches in diameter to procure the specimen for dynamic modulus 
testing.  The averages (standard deviation) of the VTM for the prepared specimens were 6.70% 
(0.38%), 4.95% (0.77%), and 6.65% (0.40%) for Culpeper, Staunton, and Salem, respectively.  
The average VTM for Staunton fell outside the target VTM of 7% ± 1% although the VTM of 
each individual specimen prepared from samples obtained on the first day of production fell 
within the target limits. 

 
Test Results 
 

Figures 12 through 14 show, on a logarithmic scale, the dynamic modulus master curves 
for the mixes from Culpeper, Staunton, and Salem, respectively.  These plots were obtained from 
test results presented in Appendix B.  Average master curves obtained from each project are 
presented in Figure 15. 
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Figure 12.  Dynamic modulus master curves for Culpeper mixes 
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Figure 13.  Dynamic modulus master curves for Staunton mixes 
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Figure 14.  Dynamic modulus master curves for Salem mixes 
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Figure 15.  Comparison of average master curves 

 
Determination of Asphalt Concrete Rutting 
 

The procedure by which the effective reduced frequency was determined is presented in 
Katicha et al. (2010).  The suggested reduced frequency was 1 Hz at the reference temperature of 
21.1°C (70°F).  A power function was found to best relate asphalt concrete rutting to the 
dynamic modulus as follows: 
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      (14) 
 
where 
 
 RHMA  =  rutting in the asphalt concrete layer (measured in mm) 
 E = dynamic modulus (in GPa) calculated at the effective reduced frequency 
 a, b = regression coefficients 

 
The effective reduced frequency and parameters a and b where determined for a typical 

flexible pavement presented here: 
 

Traffic 
 
• Two-way average annual daily trick traffic (AADTT): 2000 
• Lanes in design direction: two 
• Percent of trucks in design direction: 50% 
• Percent of trucks in design lane: 95% 
• Operational speed: 65 mph 
• Traffic growth: 4% compound 
• Design years: 20 years 
• Other parameters are taken as default values 
 
Structure 
 
• Number of layers: three 
• Asphalt concrete layer (Level 1): variable thickness, PG64-22 (binder) 
• Granular base A-1-b (input level 3): 152 mm (thickness), 262 MPa (modulus) 
• Subbase (input level 3): 52 MPa (modulus)  

 
Asphalt concrete layer thicknesses investigated by Katicha et al. (2010) were 51, 102, 

152, and 254 mm.  The parameters a and b are as presented in Figure 16, while the effective 
reduced frequency was 0.84 Hz for the cases of 102, 152, and 254 mm asphalt concrete layer and 
2.1 Hz for the case of 51 mm asphalt concrete layer.  These reduced frequencies provide a 
quality correlation between dynamic modulus and asphalt concrete rutting (Figure 16).  Katicha 
et al. (2010) suggested using an effective reduced frequency of 1 Hz as it is a frequency currently 
used for dynamic modulus testing, and it does not significantly affect the accuracy.  Figure 17 
shows that changing the effective reduced frequency from 2.1 Hz to 1 Hz for the case of 51 mm 
asphalt concrete layer does not significantly affect the accuracy of the model (R2 = 0.978). 

 
Two asphalt concrete thicknesses were analyzed with a subset of 29 master curves (from 

all tested master curves) to compare the predicted asphalt concrete rutting using the MEPDG and 
the predicted asphalt concrete rutting using Equation 14.  The two thicknesses were 152 mm and 
127 mm.  For the case of the 152 mm asphalt concrete layer, parameters a and b had been 
obtained and were used to calculate the asphalt concrete rutting obtained from the model using 
the effective reduced frequency.  For the case of the 127 mm asphalt concrete layer, values for a 
and b were not obtained, and the asphalt concrete rutting using the effective reduced frequency 
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was obtained by interpolating values obtained for the 152 mm and 102 mm asphalt concrete 
layers.   

 
The comparison between the predicted asphalt concrete rutting using the effective 

reduced frequency and the MEPDG calculated rutting is presented in Figure 18.  The agreement 
between the two methods of asphalt concrete rutting calculation is very reasonable.  The average 
deviation between the two methods was 6.8% with a maximum deviation of 23.6%.  The 
deviations in most of the cases (80%) were, however, less than 10%.  These numbers are very 
reasonable considering the typical ability of the MEPDG to predict the actual field rutting even 
after local calibration.  This shows that measuring the asphalt concrete dynamic modulus at the 
corresponding effective reduced frequency (temperature-frequency combination) would result in 
time and money savings with minimal loss of accuracy.  Moreover, the use of a test temperature 
(21.1°C) that is in the range of room temperature can decrease temperature conditioning time.  
Savings in testing can become significant if the test is used on a regular basis for mix QA during 
production. 
 

 
Figure 16.  Layer thickness effect on effective reduced frequency 
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Figure 17.  Relationship between dynamic modulus and asphalt concrete rutting for a 51 mm asphalt 

concrete layer and a 1 Hz effective reduced frequency 

 
Figure 18.  Effective reduced frequency rutting versus MEPDG calculated rutting 
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CONCLUSIONS  
 

• For all practical purposes, the VTM, VMA, and AC can be considered normally distributed.  
Although only the AC data distribution passed one of the three normality tests, deviations 
from normality for all three properties seem to be relatively small to considerably affect 
calculation results. The developed confidence intervals for each property can be used to set 
specification realizable limits in a quality acceptance plan. 

 
• The VMA does not add significant new information to that provided by the VTM and AC 

regarding mix characteristics. A statistical analysis of the VDOT production data 
demonstrated the VMA to be highly correlated with the VTM and AC.  Including the VMA 
in an acceptance plan should be based on engineering considerations that clearly show its 
benefits relative to the introduced complexity in the analysis of the data. 

 
• Choosing quality characteristics that have low correlation greatly simplifies the calculation 

of the PWL so that the main procedure is similar to the case of a single variable.  The 
multivariate ML method can be a much simpler alternative to the MVU method to estimate 
the PWL when quality measures are highly correlated.  Additionally, the ML method seems 
to be slightly more accurate in estimating the PWL.  

 
• The MEPDG can be used to develop performance-related ERSs as illustrated with the 

asphalt concrete dynamic modulus for asphalt concrete rutting performance.  The concept of 
effective reduced frequency allows characterizing the mix dynamic modulus using a single 
test at room temperature (21.1°C).  Because of the current limited availability and price of 
the dynamic modulus testing machine, the benefit of using the dynamic modulus as a mix 
quality measure is probably restricted to large-scale projects. 

 
 

RECOMMENDATIONS 
 
1. VDOT’s Materials Division should implement a multivariate PWL QA plan that incorporates 

“uncorrelated” quality measures.  
 
2. VDOT’s Materials Division should consider incorporating performance-related ERSs using 

the dynamic modulus for large-scale projects once the MEPDG is calibrated. 
 
3. VDOT’s Materials Division, along with the Maintenance Division and the Virginia 

Transportation Research Council, should develop a long term study that would link 
fundamental material properties to pavement performance based on observed field 
deterioration.  This study will further improve all aspects of pavement engineering; it will 
improve the calibration of the MEPDG and, therefore, the accuracy and dependability of 
pavement design; it will result in accurate performance prediction models that can be used in 
the QA plan and can better identify the variables that have the most significant effect on 
pavement performance. 
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COSTS AND BENEFITS ASSESSMENT 
 

The current state of pavement engineering is at the point where mechanistic-empirical 
models are no longer limited by computing power but rather the availability of a quality 
pavement performance database that can be linked to a material properties database to be used 
for proper calibration of these models.  Throughout the years, Virginia has played a leading role 
in the advancement of pavement engineering practices.  This leading role has resulted in 
improved pavement construction practices resulting in better pavement performance.  
Maintaining this leadership role will ensure that safer, more reliable and more sustainable 
pavements are built or maintained.  Better understanding of pavement performance will result in 
considerable cost savings throughout the life cycle of the pavement structure, from the design 
(better design methods), to the construction (better QA plans), to the maintenance and 
management (more efficient data collection and storage to support better decision making). 

 
The results presented in this research would provide significant benefits to Virginia.  

First, the analysis of process variation for the VTM, AC, and VMA allows the development of 
specification limits that are achievable and economically viable.  The PWL procedure extended 
to the multivariate case can properly handle correlation between the variables and places 
emphasis on uniformity and adequate average quality.  If, as recommended in this report, only 
variables that have low correlation are used, the PWL procedure is essentially the same as the 
one for the case of a single variable; therefore, the same cost/benefits suggested by Hughes et al. 
(2007) are applicable in this case.  These benefits include (1) more serviceable, long-lasting, and 
predictable highway systems; (2) effective use of inspection personnel that would be “available 
to monitor key production and placements procedures (e.g., joint tacking and surface 
preparation) that are every bit as important to good performance but are not easily measured 
upon delivery”; and (3) reduction in inspection force that results from the use of effective end-
result specifications. 
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APPENDIX A 
 

CONFIDENCE INTERVALS FOR PROCESS MEAN AND STANDARD DEVIATION 
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Table A-1. AC confidence interval of mean response for different sample sizes 
Confidence Interval for Different Percentages Sample 

Size 99 95 90 80 70 60 50 40 30 20 10 5 
3 0.45 0.34 0.29 0.22 0.18 0.15 0.12 0.09 0.07 0.04 0.02 0.01 
4 0.39 0.29 0.25 0.19 0.16 0.13 0.10 0.08 0.06 0.04 0.02 0.01 
5 0.34 0.26 0.22 0.17 0.14 0.11 0.09 0.07 0.05 0.03 0.02 0.01 
6 0.31 0.24 0.20 0.16 0.13 0.10 0.08 0.06 0.05 0.03 0.02 0.01 
7 0.30 0.23 0.19 0.15 0.12 0.10 0.08 0.06 0.04 0.03 0.01 0.01 
8 0.27 0.21 0.17 0.13 0.11 0.09 0.07 0.05 0.04 0.03 0.01 0.01 
9 0.26 0.20 0.17 0.13 0.10 0.09 0.07 0.05 0.04 0.03 0.01 0.01 

10 0.24 0.18 0.15 0.12 0.10 0.08 0.06 0.05 0.04 0.02 0.01 0.01 
12 0.22 0.17 0.14 0.11 0.09 0.07 0.06 0.05 0.03 0.02 0.01 0.01 
15 0.20 0.15 0.13 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.01 0.00 
20 0.17 0.13 0.11 0.08 0.07 0.06 0.04 0.03 0.03 0.02 0.01 0.00 
30 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.01 0.00 
40 0.13 0.10 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.01 0.01 0.00 
50 0.11 0.08 0.07 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.00 
100 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.00 0.00 

 
 

Table A-2.  AC confidence interval for the standard deviation for different sample sizes 
Confidence Interval for Different Percentages Sample Size 

99 95 90 80 70 60 50 40 30 20 10 5 
3 0.64 0.52 0.46 0.38 0.33 0.29 0.25 0.21 0.18 0.14 0.10 0.07 
4 0.58 0.48 0.43 0.37 0.33 0.30 0.27 0.24 0.21 0.17 0.13 0.10 
5 0.55 0.46 0.42 0.37 0.33 0.30 0.27 0.25 0.22 0.19 0.15 0.13 
6 0.52 0.45 0.41 0.36 0.33 0.30 0.28 0.26 0.23 0.21 0.17 0.14 
7 0.50 0.43 0.40 0.36 0.33 0.31 0.28 0.26 0.24 0.21 0.18 0.16 
8 0.49 0.43 0.39 0.36 0.33 0.31 0.29 0.27 0.25 0.22 0.19 0.17 
9 0.48 0.42 0.39 0.35 0.33 0.31 0.29 0.27 0.25 0.23 0.20 0.18 

10 0.47 0.41 0.38 0.35 0.33 0.31 0.29 0.27 0.25 0.23 0.20 0.18 
12 0.45 0.40 0.38 0.35 0.32 0.31 0.29 0.27 0.26 0.24 0.21 0.19 
15 0.43 0.39 0.37 0.34 0.32 0.31 0.29 0.28 0.26 0.25 0.22 0.21 
20 0.41 0.38 0.36 0.34 0.32 0.31 0.29 0.28 0.27 0.25 0.23 0.22 
30 0.39 0.36 0.35 0.33 0.32 0.31 0.30 0.29 0.28 0.26 0.25 0.23 
40 0.38 0.35 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.24 
50 0.37 0.35 0.34 0.32 0.31 0.31 0.30 0.29 0.28 0.27 0.26 0.25 

100 0.35 0.33 0.33 0.32 0.31 0.30 0.30 0.29 0.29 0.28 0.27 0.26 
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Table A-3. VMA confidence interval for the mean response for different sample sizes 
Confidence Interval for Different Percentages Sample 

Size 99 95 90 80 70 60 50 40 30 20 10 5 
3 1.50 1.14 0.96 0.75 0.60 0.49 0.39 0.30 0.22 0.15 0.07 0.04 
4 1.29 0.98 0.82 0.64 0.52 0.42 0.34 0.26 0.19 0.13 0.06 0.03 
5 1.14 0.87 0.73 0.57 0.46 0.37 0.30 0.23 0.17 0.11 0.06 0.03 
6 1.05 0.80 0.67 0.52 0.42 0.34 0.27 0.21 0.16 0.10 0.05 0.03 
7 0.99 0.75 0.63 0.49 0.40 0.32 0.26 0.20 0.15 0.10 0.05 0.02 
8 0.90 0.68 0.57 0.45 0.36 0.29 0.24 0.18 0.13 0.09 0.04 0.02 
9 0.87 0.66 0.55 0.43 0.35 0.28 0.23 0.18 0.13 0.09 0.04 0.02 

10 0.81 0.62 0.52 0.40 0.33 0.26 0.21 0.16 0.12 0.08 0.04 0.02 
12 0.75 0.57 0.48 0.37 0.30 0.24 0.20 0.15 0.11 0.07 0.04 0.02 
15 0.66 0.50 0.42 0.33 0.27 0.22 0.17 0.13 0.10 0.06 0.03 0.02 
20 0.57 0.43 0.36 0.28 0.23 0.19 0.15 0.12 0.09 0.06 0.03 0.01 
30 0.48 0.36 0.31 0.24 0.19 0.16 0.13 0.10 0.07 0.05 0.02 0.01 
40 0.42 0.32 0.27 0.21 0.17 0.14 0.11 0.09 0.06 0.04 0.02 0.01 
50 0.36 0.27 0.23 0.18 0.14 0.12 0.09 0.07 0.05 0.04 0.02 0.01 
100 0.27 0.21 0.17 0.13 0.11 0.09 0.07 0.05 0.04 0.03 0.01 0.01 

 
Table A-4. VMA confidence interval for the standard deviation for different sample sizes 

Confidence Interval for Different Percentages Sample Size 
99 95 90 80 70 60 50 40 30 20 10 5 

3 2.15 1.73 1.52 1.27 1.10 0.96 0.83 0.71 0.60 0.47 0.32 0.23 
4 1.94 1.61 1.44 1.24 1.11 0.99 0.89 0.79 0.69 0.58 0.44 0.34 
5 1.82 1.54 1.39 1.22 1.10 1.01 0.92 0.83 0.74 0.64 0.52 0.42 
6 1.74 1.49 1.36 1.21 1.10 1.01 0.93 0.86 0.77 0.68 0.57 0.48 
7 1.67 1.45 1.33 1.19 1.10 1.02 0.94 0.87 0.80 0.72 0.61 0.52 
8 1.62 1.42 1.31 1.18 1.09 1.02 0.95 0.89 0.82 0.74 0.64 0.56 
9 1.58 1.39 1.29 1.17 1.09 1.02 0.96 0.90 0.83 0.76 0.66 0.58 

10 1.55 1.37 1.28 1.17 1.09 1.02 0.96 0.90 0.84 0.77 0.68 0.61 
12 1.50 1.34 1.25 1.15 1.08 1.02 0.97 0.92 0.86 0.80 0.71 0.64 
15 1.44 1.30 1.23 1.14 1.08 1.02 0.98 0.93 0.88 0.82 0.75 0.69 
20 1.38 1.26 1.20 1.12 1.07 1.02 0.98 0.94 0.90 0.85 0.78 0.73 
30 1.31 1.21 1.16 1.10 1.06 1.02 0.99 0.96 0.92 0.88 0.83 0.78 
40 1.27 1.18 1.14 1.09 1.05 1.02 0.99 0.96 0.93 0.90 0.85 0.81 
50 1.24 1.16 1.13 1.08 1.05 1.02 0.99 0.97 0.94 0.91 0.87 0.83 

100 1.17 1.12 1.09 1.06 1.03 1.01 1.00 0.98 0.96 0.94 0.91 0.88 
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APPENDIX B 
 

DYNAMIC MODULUS TEST RESULTS 
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Table B-1. Day 1 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton Salem 

(°F) (Hz) Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 
25 4,616,577 4,061,090 3,942,166 2,171,397 2,747,664 2,946,375 3,646,607 3,839,400 5,273,653 
10 4,009,793 3,851,424 3,995,718 2,099,213 2,554,939 2,740,394 3,505,680 3,696,291 5,101,058 
5 3,898,304 3,723,290 3,845,190 2,014,581 2,498,834 2,664,674 3,423,912 3,567,022 4,894,721 
1 3,531,939 3,362,312 3,500,883 1,830,605 2,285,690 2,435,661 3,146,962 3,326,225 4,703,301 

0.5 2,757,328 2,433,486 3,336,587 1,716,856 2,185,187 2,327,899 3,112,029 2,343,204 4,384,852 

10 

0.1 3,038,597 2,731,005 2,939,927 1,515,171 1,955,647 2,078,549 2,701,828 2,159,507 4,083,011 
25 2,730,432 2,604,696 2,848,866 1,491,354 1,822,115 1,964,745 2,543,436 2,851,705 3,811,218 
10 2,456,758 2,384,996 2,492,496 1,341,718 1,629,636 1,746,664 2,285,287 2,606,866 3,451,141 
5 2,255,534 2,176,792 2,295,549 1,223,120 1,458,396 1,635,439 2,102,219 2,441,237 3,150,130 
1 1,795,761 1,733,770 1,772,992 970,826 1,205,479 1,332,962 1,758,628 2,054,885 2,734,615 

0.5 1,597,498 1,160,651 1,580,644 858,795 762,956 1,224,083 1,603,234 1,875,634 2,290,502 

40 

0.1 1,178,658 1,088,348 1,113,629 639,420 848,653 913,865 1,238,900 1,475,138 1,953,249 
25 1,215,203 1,066,405 1,124,437 1,002,560 1,119,066 1,030,763 1,191,487 1,434,579 2,594,715 
10 985,332 855,843 887,297 839,739 943,621 852,335 998,261 1,179,949 2,250,575 
5 821,559 706,468 725,902 724,531 821,377 729,842 841,389 1,000,504 1,983,265 
1 525,674 435,308 438,942 490,782 557,747 485,164 557,365 646,125 1,392,396 

0.5 412,150 329,980 336,063 396,239 455,725 390,753 436,886 513,148 1,132,038 

70 

0.1 247,514 193,699 194,320 240,149 273,214 234,602 249,765 290,515 711,859 
25 419,254 347,084 325,232 259,989 297,567 283,655 447,481 458,580 1,396,120 
10 303,358 238,248 230,496 198,371 247,182 210,549 335,882 340,490 937,578 
5 235,370 183,620 177,257 158,296 193,517 165,297 259,570 264,863 733,971 
1 133,028 104,772 99,809 123,580 107,222 89,021 143,503 145,901 417,545 

0.5 102,308 84,425 76,945 132,593 80,808 68,360 110,533 112,408 316,918 

100 

0.1 68,644 58,507 49,439 81,194 109,884 58,360 69,226 71,226 197,582 
25 128,001 103,553 105,610 94,922 96,658 82,905 119,844 127,508 NA 
10 90,389 73,744 71,939 64,282 65,850 57,016 83,572 89,947 NA 
5 74,647 61,629 59,105 50,756 64,213 45,138 66,876 72,654 NA 
1 52,095 44,151 41,600 38,834 45,719 31,533 44,131 49,064 NA 

0.5 39,174 31,253 29,895 22,973 37,358 23,025 32,572 36,239 NA 

130 

0.1 34,489 27,471 25,908 38,880 32,719 18,960 27,767 31,488 NA 
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Table B-2. Day 2 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton Salem 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 
25 4,634,022 3,598,584 3,164,716 2,765,804 3,449,209 3,882,646 
10 4,011,904 4,722,469 2,946,564 2,719,472 3,116,376 3,603,538 
5 3,879,409 4,613,523 2,882,357 2,644,790 3,030,288 3,534,630 
1 3,478,033 4,148,261 2,624,899 2,432,631 2,793,191 3,279,965 

0.5 3,385,839 4,100,966 2,614,831 1,723,544 2,712,838 3,180,548 

10 

0.1 2,961,389 3,546,186 2,339,368 2,144,792 2,480,453 2,866,187 
25 2,876,013 2,807,461 1,969,494 1,954,957 2,299,614 2,531,717 
10 2,511,177 2,540,722 1,781,551 1,786,294 2,113,027 2,342,084 
5 2,359,959 2,375,055 1,707,207 1,665,085 1,946,581 2,129,674 
1 1,856,657 1,843,354 1,427,048 1,411,599 1,639,679 1,772,190 

0.5 1,243,439 1,339,662 1,342,813 956,106 1,492,635 1,627,711 

40 

0.1 1,201,460 1,214,758 1,022,701 1,024,833 1,161,102 1,256,775 
25 1,164,955 1,180,615 1,114,823 1,160,071 1,231,574 1,351,966 
10 921,860 929,431 932,805 1,000,690 1,059,663 1,133,038 
5 756,325 764,350 801,484 871,841 919,655 964,134 
1 452,113 459,918 545,090 605,324 618,268 630,889 

0.5 340,569 351,507 440,075 495,863 495,053 500,604 

70 

0.1 192,482 197,235 273,857 305,870 295,325 297,110 
25 348,588 354,022 359,297 385,396 447,214 451,991 
10 240,311 245,162 264,870 300,763 330,887 329,915 
5 182,525 187,732 205,725 262,290 258,084 254,349 
1 98,726 104,839 109,855 138,646 144,844 141,972 

0.5 76,948 82,760 85,502 100,219 110,729 108,650 

100 

0.1 78,192 56,805 55,185 58,013 84,862 105,393 
25 129,917 122,063 98,966 120,147 133,560 120,427 
10 90,448 86,725 64,047 77,440 88,761 85,116 
5 70,525 71,588 50,930 60,567 70,151 67,872 
1 46,469 49,322 33,111 38,316 101,097 45,075 

0.5 33,969 37,399 24,101 28,430 70,969 33,006 

130 

0.1 28,683 33,606 19,992 23,064 58,707 27,513 
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Table B-3. Day 3 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton Salem 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 
2 

25 4,641,804 4,780,431 3,040,234 4,602,999 3,552,448 
10 4,246,305 4,825,892 2,934,005 4,302,999 3,784,860 
5 4,165,463 4,707,958 2,054,510 4,000,000 3,674,486 
1 3,788,032 4,385,741 1,917,036 3,500,000 3,445,017 

0.5 3,630,546 4,422,268 1,783,259 3,100,000 2,548,899 

10 

0.1 3,271,128 3,863,599 1,624,875 2,950,000 2,867,678 
25 3,699,380 4,918,435 2,131,808 3,091,056 2,706,351 
10 3,363,712 4,598,556 1,990,253 3,107,253 2,495,228 
5 3,352,995 4,474,686 1,400,632 2,945,482 2,289,935 
1 2,673,393 3,616,735 1,553,067 2,493,399 1,905,755 

0.5 2,526,603 3,509,613 1,062,939 2,401,826 1,707,088 

40 

0.1 1,882,585 2,567,151 822,064 1,906,232 1,342,372 
25 1,381,512 1,592,264 2,037,343 1,142,189 1,339,825 
10 1,092,324 1,232,764 1,698,331 961,529 1,113,888 
5 907,612 1,019,108 1,470,381 826,582 949,696 
1 555,823 613,848 1,034,563 539,550 628,074 

0.5 424,677 451,880 874,544 421,506 497,667 

70 

0.1 232,238 239,580 537,886 243,249 295,348 
25 402,744 435,480 646,892 560,719 428,245 
10 279,278 299,085 527,260 395,892 320,214 
5 212,279 224,934 436,508 310,274 252,270 
1 114,177 118,654 248,648 169,321 188,938 

0.5 87,205 90,127 187,732 125,151 104,919 

100 

0.1 56,457 92,174 117,931 72,711 67,739 
25 129,377 139,572 90,120 120,704 115,078 
10 89,571 91,661 61,172 87,641 85,715 
5 71,260 73,195 47,768 66,331 69,795 
1 46,653 48,150 29,949 38,687 48,409 

0.5 34,345 35,662 21,420 27,980 38,646 

130 

0.1 29,008 30,171 18,428 20,705 32,837 

NA 
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Table B-4. Day 4 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton Salem 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 
25 3,985,383 5,698,776 2,706,370 3,057,456 3,242,991 5,221,518 
10 3,987,583 4,336,314 2,623,927 2,905,942 3,087,167 5,083,287 
5 3,875,227 4,238,071 2,542,562 2,823,622 2,964,808 5,052,921 
1 3,604,426 3,960,198 2,359,365 2,641,241 2,768,875 4,654,891 

0.5 3,520,284 3,841,302 2,257,162 1,927,351 2,598,952 4,860,812 

10 

0.1 3,242,593 3,493,651 2,035,824 2,281,338 2,350,648 4,370,705 
25 3,312,499 2,756,465 1,884,299 2,116,145 2,400,384 3,893,074 
10 2,923,886 2,524,475 1,722,009 1,894,554 2,139,770 3,633,737 
5 2,733,084 2,323,762 1,564,353 1,764,448 1,988,365 3,474,281 
1 2,200,183 1,867,339 1,300,582 1,469,153 1,672,306 2,843,507 

0.5 1,990,463 1,710,474 1,140,118 1,342,643 1,533,045 2,603,335 

40 

0.1 1,456,953 1,272,107 885,012 1,039,516 1,220,455 2,071,430 
25 1,324,149 1,303,061 1,495,216 1,170,058 1,359,589 2,213,239 
10 1,061,650 1,033,936 1,422,593 991,400 1,156,622 1,866,252 
5 889,238 860,918 1,246,074 862,928 1,004,176 1,659,995 
1 555,111 535,058 837,955 566,699 691,357 1,182,962 

0.5 424,121 412,596 688,327 447,353 567,423 973,867 

70 

0.1 240,513 231,592 421,595 261,379 361,445 638,617 
25 513,517 457,647 325,503 345,129 543,359 1,026,523 
10 360,360 329,795 237,625 244,437 416,544 740,951 
5 275,739 254,958 181,519 184,025 329,490 583,394 
1 149,550 140,907 91,488 92,865 190,173 323,526 

0.5 114,105 109,263 68,950 70,499 145,079 249,565 

100 

0.1 71,614 72,197 44,317 44,530 90,123 152,132 
25 120,110 121,925 86,305 92,857 182,040 419,241 
10 85,851 87,655 56,097 58,092 127,806 243,486 
5 69,261 72,143 42,026 45,669 100,085 187,363 
1 47,243 50,540 26,428 26,179 61,923 118,485 

0.5 34,489 37,310 19,566 18,744 45,545 85,954 

130 

0.1 29,658 32,446 17,071 16,214 34,140 68,984 
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Table B-5. Day 5 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton Salem 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 
25 4,414,922 4,505,713 2,930,940 2,559,998 3,106,749 4,251,475 
10 4,210,027 4,941,743 2,799,129 1,860,898 2,946,272 3,554,966 
5 4,072,086 4,864,089 1,895,215 1,773,182 2,857,491 3,468,393 
1 3,789,519 4,378,156 1,775,597 1,662,679 2,657,834 3,149,157 

0.5 3,711,970 4,598,109 1,532,229 1,440,878 1,878,751 3,138,196 

10 

0.1 3,299,963 3,932,944 1,382,709 1,311,033 1,772,791 3,057,823 
25 3,064,140 3,768,231 1,983,721 1,427,599 2,258,182 2,599,037 
10 2,687,199 3,108,253 1,819,674 1,268,659 2,087,831 2,492,509 
5 2,538,100 3,205,003 1,680,062 1,130,816 1,917,990 2,450,388 
1 2,035,957 2,306,665 1,414,609 959,108 1,657,502 1,987,762 

0.5 1,877,629 2,456,771 1,254,539 834,445 1,518,972 1,912,525 

40 

0.1 1,451,936 1,810,445 987,858 684,979 1,202,603 1,442,608 
25 1,327,229 1,411,137 1,044,949 1,072,100 1,323,309 1,327,752 
10 1,072,329 1,148,448 876,213 926,260 1,174,082 1,114,523 
5 890,129 969,575 746,970 798,037 1,043,001 942,276 
1 560,986 622,627 491,401 533,163 741,061 611,022 

0.5 428,887 474,403 387,368 416,877 602,793 502,810 

70 

0.1 245,649 273,170 231,114 255,792 379,482 398,525 
25 464,248 493,241 287,084 346,548 487,330 405,424 
10 333,737 333,804 214,447 256,347 374,128 288,704 
5 256,363 257,936 165,421 197,380 297,174 219,396 
1 141,262 140,624 85,014 102,267 167,707 119,995 

0.5 108,880 108,247 65,379 76,923 130,142 155,005 

100 

0.1 70,973 NA 42,994 49,155 78,580 132,842 
25 131,015 131,145 53,878 90,620 157,330 157,291 
10 92,101 87,326 53,233 60,636 107,656 118,644 
5 73,747 71,096 42,698 46,908 85,046 94,905 
1 51,121 NA 28,070 29,366 54,486 67,891 

0.5 39,225 NA 21,099 20,988 39,897 55,868 

130 

0.1 35,526 NA 18,371 16,905 30,827 44,281 
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Table B-6. Day 6 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 

25 3,079,223 4,184,464 3,017,731 3,929,687 

10 4,184,666 3,500,170 2,925,759 3,661,689 

5 4,000,569 3,473,876 2,856,812 3,518,515 

1 3,697,154 3,232,358 2,631,521 3,283,989 

0.5 3,480,960 3,102,958 2,554,156 2,877,640 

10 

0.1 3,293,959 2,825,289 2,298,466 2,580,195 

25 3,139,500 2,785,084 2,070,220 2,165,876 

10 2,817,851 2,541,488 1,877,586 1,982,146 

5 2,706,848 2,376,695 1,186,925 1,818,493 

1 2,167,087 2,008,915 1,026,868 1,553,809 

0.5 1,939,487 1,848,767 860,123 1,411,116 

40 

0.1 1,509,807 1,475,879 711,510 1,133,182 

25 1,516,477 1,543,358 1,149,658 1,160,715 

10 1,242,607 1,204,332 950,083 984,622 

5 1,037,016 998,126 819,126 851,706 

1 625,049 622,080 547,303 577,343 

0.5 473,343 475,224 439,411 459,397 

70 

0.1 264,205 265,427 262,871 282,371 

25 477,901 502,783 390,793 383,666 

10 344,329 358,384 299,951 293,934 

5 263,469 275,647 236,576 231,610 

1 144,903 148,340 124,665 125,387 

0.5 111,503 112,853 91,984 94,230 

100 

0.1 73,144 72,573 72,170 61,346 

25 135,482 127,843 96,883 104,223 

10 93,347 85,009 64,906 70,007 

5 74,297 68,659 49,497 54,804 

1 49,253 47,627 31,049 34,243 

0.5 35,497 34,581 23,024 25,314 

130 

0.1 29,969 30,219 18,745 20,523 
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Table B-7. Day 7 dynamic modulus results (psi) 
Temperature Frequency Culpeper Staunton 

(°F) (Hz) Sample 1 Sample 2 Sample 1 Sample 2 
25 NA 3,012,546 3,905,948 
10 NA 2,821,571 3,573,988 
5 4,893,368 2,702,495 3,402,659 
1 4,628,523 2,472,032 3,212,487 

0.5 4,949,102 2,304,207 2,729,474 

10 

0.1 

NA 

4,335,051 2,112,950 2,513,820 
25 3,239,133 2,008,942 2,449,970 
10 2,985,610 1,853,935 2,335,245 
5 2,929,006 1,736,015 1,593,756 
1 2,358,757 1,431,784 1,840,779 

0.5 2,254,374 1,325,181 1,243,363 

40 

0.1 

NA 

1,627,231 1,013,856 1,333,819 
25 1,245,768 1,488,617 1,179,077 1,535,084 
10 1,025,676 1,231,160 1,033,025 1,266,748 
5 860,613 1,040,360 903,683 1,090,028 
1 544,444 636,735 626,822 751,675 

0.5 422,795 480,725 509,287 604,561 

70 

0.1 240,433 259,541 316,662 373,788 
25 502,783 520,906 365,433 507,923 
10 358,384 373,372 380,254 382,991 
5 275,647 289,094 301,872 302,638 
1 148,340 155,665 167,083 168,821 

0.5 112,853 118,840 125,935 128,798 

100 

0.1 72,573 74,591 73,847 77,195 
25 116,423 105,835 256,524 172,171 
10 78,826 73,727 172,664 115,660 
5 62,897 58,639 133,931 87,901 
1 42,009 40,413 74,981 50,624 

0.5 30,650 39,345 52,060 36,133 

130 

0.1 26,696 44,873 34,438 26,422 
 


